Integrated ZnO Nano-Electron-Emitter with Self-Modulated Parasitic Tunneling Field Effect Transistor at the Surface of the p-Si/ZnO Junction

نویسندگان

  • Tao Cao
  • Laitang Luo
  • Yifeng Huang
  • Bing Ye
  • Juncong She
  • Shaozhi Deng
  • Jun Chen
  • Ningsheng Xu
چکیده

The development of high performance nano-electron-emitter arrays with well reliability still proves challenging. Here, we report a featured integrated nano-electron-emitter. The vertically aligned nano-emitter consists of two segments. The top segment is an intrinsically lightly n-type doped ZnO nano-tip, while the bottom segment is a heavily p-type doped Si nano-pillar (denoted as p-Si/ZnO nano-emitter). The anode voltage not only extracted the electron emission from the emitter apex but also induced the inter-band electron tunneling at the surface of the p-Si/ZnO nano-junction. The designed p-Si/ZnO emitter is equivalent to a ZnO nano-tip individually ballasted by a p-Si/ZnO diode and a parasitic tunneling field effect transistor (TFET) at the surface of the p-Si/ZnO junction. The parasitic TFET provides a channel for the supply of emitting electron, while the p-Si/ZnO diode is benefit for impeding the current overloading and prevent the emitters from a catastrophic breakdown. Well repeatable and stable field emission current were obtained from the p-Si/ZnO nano-emitters. High performance nano-emitters was developed using diamond-like-carbon coated p-Si/ZnO tip array (500 × 500), i.e., 178 μA (4.48 mA/cm2) at 75.7 MV/m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy

ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...

متن کامل

Nano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy

ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...

متن کامل

Functional polyester fabric through simultaneous aminolysis and nano ZnO synthesis

Here, in situ synthesis of nano zinc oxide, along with aminolysis of polyester fabric, has simultaneously been carried out by using triethanol amine (TEA) and zinc acetate. The ZnO nano particles (NPs) were formed and stabilized on the fabric surface by amine compound at 130 °C for 1 h. The synthesis of nano ZnO particles on the polyester fabric were confirmed by X-ray diffraction (XRD) pattern...

متن کامل

Sol-gel spin coating derived ZnO thin film to sense the acetic acid vapor

ZnO thin film of 80 nm thickness was deposited by the sol-gel spin coating method on SiO2/Si substrate and subsequently post-annealed at 500°C with a flow of oxygen for 60 min. Crystallographic structure of the sample was characterized by X-ray diffraction (XRD) method while a field emission scanning electron microscope (FESEM) was used to investigate the surface physical morphology ...

متن کامل

Sol-gel spin coating derived ZnO thin film to sense the acetic acid vapor

ZnO thin film of 80 nm thickness was deposited by the sol-gel spin coating method on SiO2/Si substrate and subsequently post-annealed at 500°C with a flow of oxygen for 60 min. Crystallographic structure of the sample was characterized by X-ray diffraction (XRD) method while a field emission scanning electron microscope (FESEM) was used to investigate the surface physical morphology ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016